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Experiments performed in normal animals suggest that the basal ganglia (BG) are crucial in motor program selection. BG are also
involved in movement disorders. In particular, BG neuronal activity in parkinsonian animals and patients is more oscillatory and more
synchronous than in normal individuals.

We propose a new model for the function and dysfunction of the motor part of BG. We hypothesize that the striatum, the subthalamic
nucleus, the internal pallidum (GPi), the thalamus, and the cortex are involved in closed feedback loops. The direct (cortex–striatum–
GPi–thalamus– cortex) and the hyperdirect loops (cortex–subthalamic nucleus–GPi–thalamus– cortex), which have different polarities,
play a key role in the model. We show that the competition between these two loops provides the BG– cortex system with the ability to
perform motor program selection. Under the assumption that dopamine potentiates corticostriatal synaptic transmission, we demon-
strate that, in our model, moderate dopamine depletion leads to a complete loss of action selection ability. High depletion can lead to
synchronous oscillations. These modifications of the network dynamical state stem from an imbalance between the feedback in the direct
and hyperdirect loops when dopamine is depleted.

Our model predicts that the loss of selection ability occurs before the appearance of oscillations, suggesting that Parkinson’s disease
motor impairments are not directly related to abnormal oscillatory activity. Another major prediction of our model is that synchronous
oscillations driven by the hyperdirect loop appear in BG after inactivation of the striatum.
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Introduction
The basal ganglia (BG) are a complex network of subcortical
nuclei involved in motor control, sensorimotor integration, and
in cognitive and motivational processes (Gerfen and Wilson,
1996; Bolam et al., 2000). Their functions remain a subject of
debate. Several experiments and anatomical considerations sug-
gest that BG may be involved in the selection of motor programs
(Chevalier and Deniau, 1990; Mink and Thach, 1991; Mink,
1996; Turner and Anderson, 1997). Other experiments lead to
the view that BG play a critical role in reinforcement learning
(Apicella et al., 1991; Schultz et al., 1993; Bar-Gad and Bergman,
2001).

Parkinson’s disease (PD) and Huntington’s disease involve
BG dysfunctions. A model of motor symptoms of these diseases
was proposed by Albin et al. (1989) and DeLong (1990). It relies

on a segregation between the direct and indirect pathways going
from the striatum to BG output structures. It also assumes that
dopamine (DA) has opposing effects in these two pathways me-
diated through D1 and D2 receptors, respectively. This model
predicts successfully that inactivation of internal pallidum (GPi)
or subthalamic nucleus (STN) palliates PD symptoms (Bergman
et al., 1990; Benazzouz et al., 1993). However, it is not sufficient to
account for the modifications in firing patterns observed over the
BG– cortical network after DA depletion (Bergman et al., 1994;
Nini et al., 1995; Hutchison et al., 1997; Raz et al., 2001). More-
over, striatal neurons are involved in both the direct and indirect
pathways (Bolam et al., 2000; Wu et al., 2000; Levesque and Par-
ent, 2005), D1 and D2 receptors are colocalized on striatal neu-
rons (Aizman et al., 2000), and the effects of DA mediated
through D1 and D2 receptors are not always opposing (Calabresi
et al., 2000; Kerr and Wickens, 2001; Nicola et al., 2004). Last but
not least, a recent study concludes that lesions in the external
pallidum in the monkey do not induce parkinsonian-like motor
symptoms and do not affect the activity pattern in GPi (Soares et
al., 2004). This raises additional questions regarding the primary
involvement of the indirect pathway in PD symptoms.

Here, we propose a new model for the motor part of BG,
which does not require a segregation between the direct and in-
direct pathways. Instead, the model assigns a primary role to the
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hyperdirect pathway, which goes from the cortex to the STN and
the GPi (Nambu et al., 2000). It also assumes that the direct and
hyperdirect pathways operate as competing feedback loops (De-
niau et al., 1996; Hoover and Strick, 1999; Kelly and Strick, 2004).
Hence, it is a dynamical model of the BG– cortical network. We
show that the competition between these two loops may be a basis
for BG functions and dysfunctions. Specifically, it provides a nat-
ural mechanism for action selection and its loss after DA deple-
tion. It also suggests that pathological synchronous oscillations
can stem from a dynamical imbalance between the direct and
hyperdirect pathways. Part of this work has been presented pre-
viously in abstract form (Leblois et al., 2002, 2003).

Materials and Methods
The model
In the present study, we focus on the implications of the direct and
hyperdirect pathways in BG physiology and pathophysiology. Therefore,
in most of our study, the indirect pathway and the external segment of the
globus pallidus (GPe) are not included. Hence, our model of the BG
network contains five populations of neurons. Three of these popula-
tions are excitatory. These are the motor cortex (Ctx), the ventral ante-
rior and ventral lateral nucleus of the thalamus (Th), and the STN. Two
populations are inhibitory. They correspond to the sensory–motor ter-
ritories of the striatum (Str) and the GPi. The impact of adding a GPe
population to the network is briefly addressed in Discussion.

Anatomical and electrophysiological studies have shown that the con-
nectivity along the direct pathway is topographically organized and that
the flow of information through this pathway displays functional and
somatotopic segregation (Alexander et al., 1986; Deniau et al., 1996;
Nakano, 2000). In line with these features, our BG network model con-
sists of two parallel circuits that control two motor programs (Fig. 1). It
can be thought of as one “somatotopic channel” involved in the execu-
tion of these two motor programs. We also assume that the two circuits
interact at the level of the STN to GPi connection. This hypothesis is
supported by anatomy and electrophysiological evidence, which shows
that the connectivity between STN and GPi is more divergent than the
connectivity along the direct pathway, and that the functional segrega-
tion observed along the direct pathway is only partly maintained along
the hyperdirect pathway (Parent and Hazrati, 1995b). The architecture of
our model is summarized in Figure 1. In particular, each STN population
interacts with the GPi populations in the two circuits. A motor program
is executed only if the average activity of the cortical population crosses
some defined threshold in the corresponding circuit.

It is also clear from this figure that each circuit can be thought of as
being composed of two feedback loops as follows: (1) A global positive
feedback loop: Ctx3Str3GPi3Th3Ctx. In this loop, the cortex acts
on the thalamus through a sequence of one excitatory and two inhibitory

sets of connections. Therefore, the cortex disinhibits the thalamus. Be-
cause the Ctx3Str3 GPi path is usually called the direct pathway, this
loop will be referred to in the following as the “direct loop.” (2) A global
negative feedback loop: Ctx3STN3GPi3Th3 Ctx. In this loop, the
cortex acts on the thalamus through a sequence of three sets of connec-
tions: two excitatory (Ctx3STN3GPi) and one inhibitory (GPi3Th).
Therefore, it inhibits the thalamus. Following Nambu et al. (2000), we
call this loop the “hyperdirect loop.”

Neuronal dynamics
The number, N�, and the cell properties of the neurons in a given pop-
ulation � (� � Ctx, Str, GPi, Th, STN) are assumed to be identical in the
two circuits. The single neuron dynamics are described by a rate model
(Wilson and Cowan, 1972; Hopfield, 1984; Shriki et al., 2003). A neuron
in population � in circuit k is characterized by its instantaneous activity
Aik

� (t), where i � 1, . . . , N�, and k � 1, 2. If Iik
� is the total input to the

neuron and Sik
� ( x) is its nonlinear input– output transfer function, its

instantaneous activity is given by the following: Aik
� (t) � Sik

� (Iik
� ). For

simplicity, we will consider threshold linear transfer functions, Sik
� ( x) �

��[ x � Ti�]�, where [ x]� � x for x � 0 and 0 otherwise; Ti� is the
threshold of neuron i in population �, and �� � 0 is the gain of the
input– output transfer function of the neurons in that population. For
simplicity, we take Ti� � T� independently of i for � � Ctx, GPi, Th,
STN. In contrast, we take a broad Gaussian distribution for the thresh-
olds of the striatal neurons (average, TStr; SD, TStr/2) to reproduce the
distribution of spontaneous activity of the striatal projection neurons
observed in experiments (Sandstrom and Rebec, 2003; Slaght et al.,
2004), as shown in Results.

The synaptic output of neuron (i, �, k) to a neuron in population � is
characterized by a smooth variable mik

��(t), which is a low-pass filtered
version of its instantaneous level of activity (Ermentrout, 1996; Shriki et
al., 2003). This variable follows the dynamical equation as follows:

���

dmik
��

dt
� �mik

�� � Aik
� , (1)

where ���, which only depends on � and �, is the time constant of the
synapses between neurons in population � and in population �. We will
assume that ��� � � for (�, �) � (Ctx, STN). To account for the presence
of NMDA receptors on STN neurons, �CtxSTN is assumed to be larger
than �. The ratio �CtxSTN/� will be denoted by �.

Connectivity
The connectivity from population � to population � in circuit k � 1, 2 is
random. The connectivity matrix, Jijk

��, is such that Jijk
�� � 1 if neuron j, �,

k is connected presynaptically to neuron i, �, k, and Jijk
�� � 0 otherwise.

The average number of inputs from population � to neuron i, �, k de-
pends solely on � and � and will be denoted by K��. The strength of the
interaction between two neurons in the same circuit depends solely on
the populations to which they belong. It will be denoted G��. As stated
above, populations belonging to different circuits do not interact, except
for the STN and the GPi. The strength of the cross-connection between
the STN in one circuit and the GPi in the other circuit is �GGPiSTN, where
� is a constant and GGPiSTN is the strength of interaction between the
STN and the GPi in the same circuit. The connectivity along the cross-
connection from circuit k to circuit k� is denoted by Jij

crossk�k.
For the sake of simplicity, we do not introduce any lateral interactions

in the various populations of the model.

Total inputs to the neurons
The total synaptic inputs Iik

� received by neuron i in population � (for
� � Ctx, Str, GPi, Th, STN) in circuit k, are given by the following:

Iik
Ctx�t	 � �

j�1

nTh

GCtxTh J ijk
CtxThmjk

CtxTh�t � 
CtxTh	 � Hik
Ctx�t	 � �ik

Ctx�t	

(2)

GPi

Cortex

Thalamus StriatumSTN

DA

Figure 1. Architecture of the model. The network consists of two circuits, each comprising a
cortical, a striatal, a thalamic, a subthalamic, and a pallidal population. The two circuits interact
via diffused subthalamic–pallidal connections. Arrows, Excitatory connections. Dots, Inhibitory
connections. The substancia nigra pars compacta is not explicitly represented in the model.

3568 • J. Neurosci., March 29, 2006 • 26(13):3567–3583 Leblois et al. • Competition in a Model of the Basal Ganglia



Iik
Str�t	 � �

j�1

nCtx

GStrCtx J ijk
StrCtxmjk

StrCtx�t � 
StrCtx	 � Hik
Str�t	 � �ik

Str�t	 (3)

Iik
STN�t	 � �

j�1

nCtx

GSTNCtx J ijk
STNCtxmjk

STNCtx�t � 
STNCtx	 � �ik
STN�t	 (4)

Iik
GPi�t	 � �

j�1

nSTN

GGPiSTN J ijk
GPiSTNmjk

GPiSTN�t � 
GPiSTN	

� ��
j�1

nSTN

GGPiSTN J ij
crosskk�mjk�

GPiSTN�t � 
GPiSTN	

� �
j�1

nStr

GGPiStr J ijk
GPiStrmjk

GPiStr�t � 
GPiStr	 � �ik
GPi�t	 (5)

Iik
Th�t	 � ��

j�1

nGPi

GThGPi J ijk
ThGPimjk

ThGPi�t � 
ThGPi	 � �ik
Th�t	, (6)

where 
�� denotes the synaptic delay from population � to population
�. The cortical and striatal populations receive external inputs (see be-
low) denoted by Hik

Ctx and Hik
Str, respectively. The last term in these equa-

tions, �ik
� (t), represents additional Gaussian white noisy inputs with a

zero mean and a SD, 	�.
External inputs to the network in relation to the planning and execution

of movements. We assume that, in relation to the planning and execution
of a movement, the neurons in the cortical and the striatal populations
receive additional external inputs. These inputs represent synaptic en-
tries to cortical and striatal neurons coming from other cortical areas and
brain regions that are not explicitly incorporated in the model. For sim-
plicity, the inputs to the cortical and striatal populations in circuit k (k �
1, 2) are taken to be homogeneous over the populations. In the text and
figures, external inputs are displayed in arbitrary units.

The inputs to cortical neurons. The two cortical populations in our
model represent neurons in the motor cortex encoding for two motor
programs. Because other brain regions sending inputs to the motor cor-
tex are not explicitly represented in the model, we take these inputs into
account by including an external input, Hik

Ctx, in the dynamics. We as-
sume that the temporal profile of this external input has the following
form:

Hik
Ctx�t	 � Hk

Ctxcos2�

t � tm

Dmvt
� (7)

for tm � Dmvt/2 � t � tm � Dmvt/2 and zero otherwise. Hence, Dmvt is the
total duration of the input related to the movement and tm is the time at
which this input takes its maximal value, Hk

Ctx.
The degree of selectivity of the external inputs to the cortex (i.e., the

extent to which the external inputs to the two cortical populations in the
two circuits are different) will be measured by the following:

� �
H1

Ctx � H2
Ctx

H1
Ctx � H2

Ctx . (8)

A weakly selective external input to the cortex corresponds to a small �. In
reality, the input to the cortex related to action execution is presumably
selective to some extent. However, our idea is that this selectivity may not
be sufficient to induce action selection in normal situations but that the
BG network is required for it to occur. To highlight this role of the BG, we
assume in most of this study that the cortical input is nonselective [i.e.,
identical in the two cortical populations (� � 0)]. We will show that even
in this case the BG can make the response of the cortex selective.

The inputs to striatal neurons. During motor planning, information
coming from sensorimotor cortical area, and related to the motor pro-
gram to be executed, is sent to the sensory–motor striatum (Gardiner and
Nelson, 1992; Boussaoud and Kermadi, 1997; Lee and Assad, 2003). This

sensory information is represented in the model by adding a transient
and weakly selective external input to the striatum. This input starts at
the same time as the cortical input, but its duration, D Str, is much shorter
than the duration of the cortical input (Dmvt). We take the following for
its profile:

Hi1
Str�t	 � HStr ; Hi2

Str�t	 � �HStr (9)

for tm � Dmvt/2 � t � tm � Dmvt/2 � dIstr, where dIstr � 200 ms is the
duration of this input, and zero otherwise.

Modeling the effect of DA
Dopaminergic SNc neurons project to several BG nuclei (for review, see
Graybiel, 2000), but these projections and the dopaminergic receptors
are more numerous in the striatum (Haber and Fudge, 1997). Thus, we
have assumed that the DA primarily affects the BG dynamics via its effects
in the striatum. The effects of DA on synaptic and cellular properties in
the striatum is still a topic of debate (for review, see Calabresi et al., 2000;
O’Donnell, 2003; Nicola et al., 2004). Most of the available data regarding
the presynaptic and postsynaptic effects of DA were obtained in vitro.
These data are often contradictory, presumably because of the different
experimental conditions under which they were obtained, and whether
the changes in DA concentration are phasic and/or attributable to local
fluctuations or whether they are pathological. Here, we focus on the
pathological changes in the dynamics of the cortex–BG network induced
by a depletion in the average extracellular DA concentration. Previous in
vitro studies suggest that the threshold of striatal neurons increases with
DA (Calabresi et al., 2000; O’Donnell, 2003). Consistent with this idea, in
vivo studies have shown that the activity of striatal projection neurons
increases after DA depletion both in anesthetized and awake animals
(Kish et al., 1999; Tseng et al., 2001). We modeled this increase in activity
after DA depletion phenomenologically by the following dependence of
the average threshold of striatal neurons, TStr, on the level of DA as
follows:

TStr � �0.02 � 0.03�1 �
1.1

1 � 0.1 exp��0.03�D � 100		� ,

(10)

where D is the relative level of striatal DA compared with its normal level
(D � 100%). This function is plotted in Figure 2 A. In addition, cortico-
striatal transmission is altered by DA depletion (Calabresi et al., 2000)
and the signal-to-noise ratio in the striatum increases with the level of DA
(O’Donnell, 2003; Nicola et al., 2004). Although little is known about the
change in corticostriatal synaptic strength with DA, it seems reasonable
to assume that the DA potentiates this synaptic connection. In fact, the
combined increase in corticostriatal synaptic strength and average stria-
tal threshold would result in a higher signal-to-noise ratio in the stria-
tum. Moreover, the phasic activation induced by glutamate in striatal
neurons is amplified by DA (Kiyatkin and Rebec, 1996), suggesting a
postsynaptic potentiation of the corticostriatal synapses. We thus con-

Figure 2. The effects of DA. A, The effect on the threshold of striatal neurons (Eq. 10). B, The
effect on the effective strength of the corticostriatal synapses (Eq. 11). D � 100% corresponds
to the “normal” physiological level of DA.
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sider variations of the corticostriatal synaptic strength with DA of the
following form:

GStrCtx �
0.75

1 � exp��0.09�D � 60		
(11)

as shown on Figure 2 B.
Note that the two effects of DA depletion captured by Equations 10

and 11 are antagonistic because the first increases the response of the
striatal neurons to an elevation of cortical activity, whereas the second
effect decreases it.

Numerical simulations of the detailed model
The complexity of the model described above makes it very hard to study
analytically. For this reason, we will investigate it with numerical
simulations.

The BG– cortical circuitry is characterized by high probabilities of con-
nections between interacting neurons. Recent estimates of connectivity
from cortex to striatum and STN indicate that the number of cortical
neurons connected to given neurons in these two structures are in the
order of KStrCtx � 5000 (Kincaid et al., 1998) and KSTNCtx � 100 (Mink,
1996), respectively. The connectivity from the striatum to the GPi, the
STN to GPi, and the GPi to the thalamus are less well known. In our
simulations, we took KGPiSTN � 800 and KThGPi � 500. For the connec-
tivity between the striatum and GPi, we chose KGPiStr � 50. We also
checked that all the results were unchanged if KGPiStr � 500. To account
for the large connectivity from the thalamus to cortex, we took KCtxTh �
1000.

Obviously, it is unfeasible to simulate a model of the cortex–BG net-
work that would incorporate a number of neurons in each of the popu-
lations that would be similar to reality. The issue is thus how best to scale
the network to a size suitable for simulations with reasonable time and
memory consumption. In the present study, we used the approach de-
veloped by Golomb and Hansel (2000). The idea is that a network in
which all the populations have the same size, Nsim, will display properties
very close to those of the original network, provided that the connectivity
between population � and population � is scaled as follows:

1

K��
�

1

N�
�

1

K��
sim �

1

Nsim , (12)

where N� and K�� are the number of neurons in population � and the
average connectivity between populations � and � in the original system,
and K��

sim is the average connectivity between the two populations in the
simulated scaled network.

In our simulations, we took Nsim � 1000. The scaled connectivity
parameters are subsequently KCtxStr

sim � 909, KCtxSTN
sim � 92, KSTNGPi

sim �
446, KGPiTh

sim � 333, KThCtx
sim � 500, and KStrGPi

sim � 48.
Integration method. The simulations of the model were performed by

integrating the dynamics using a standard first-order Euler algorithm
with fixed time step 
t � 0.5 ms (Press et al., 1993). We also ran several
simulations with a smaller time step (0.05 ms) to check that the dynamics
were unchanged.

Single-unit and population activity. Spike trains for a given neuron (i,
�, k) were generated according to an inhomogeneous Poisson process
with an average rate given by its instantaneous firing rate, Aik

� . Population
activities were calculated by averaging the instantaneous firing rates over
one set of 20 units taken randomly in the populations.

PETH analysis of movement related activity. To characterize the
movement-related activity in our model, we generated the perievent time
histogram (PETH) of a single unit around the movement initiation. To
that end, we repeated Ntrial � 30 times the simulation of the system when
the movement related external inputs, H ctx(t), H Str(t), were applied. The
initial conditions as well as the noise were different from trial to trial. The
PETH was computed by averaging the activities in these trials centered on
the onset of movement related input, tm � Dmvt/2 (see above), as is
usually done to analyze experimental data. We proceeded as follows. For
each trial i, the neuron firing-rate time course Fi(t) was first determined
with a time in 10 ms by a kernel estimator in which the spike times Ti

j

were convolved with a kernel function K(t): Fi(t) � �j�1
n K(t � Ti

j).

We used a Gaussian kernel K(t) � K�t	
1

s�2

exp��

t2

2s2�, where s deter-

mined the kernel width, controlling the degree of smoothing. We took
s � 0.25/F, where F is the mean firing rate of the neuron over the record-
ing period (Baker and Gerstein, 2001). The mean firing rate of the neuron
across the trials, aligned on the onset of cortical additional input, was
then calculated, and yielded a smoothed version of the standard PETH.
The mean and SD of the mean rate were determined over a baseline
region (during the 500 ms preceding onset of additional input to cortex).
The onset time was defined as the first bin where the estimate rate was
modified by 10% from the mean in the same direction (i.e., elevation or
suppression). Neurons were classified according to the polarity of the
response: inhibition or activation.

Spectral analysis. Spectral analysis was performed on spike trains
formed over 100 s of unitary activity in the full-DA (D � 100%) and
DA-depleted (D � 20%) states. Single neuron oscillatory behavior was
analyzed using power spectral analysis of the spike trains, whereas syn-
chronized oscillatory activity between neurons was detected using coher-
ence spectra between pairs of spike trains. Both autospectra and coher-
ence functions were calculated with Hanning windows and mean
detrending of data segments. Coherence is a function of frequency and is
calculated from the cross-spectral density between the two waveforms
normalized by the power spectral density of each waveform. Coherence
values can range from 0 if the spike trains are not linearly related to a
value of 1 if the spike trains have a perfectly linear relationship. A statis-
tically significant coherence value between the discharge of two neurons
was used to indicate the presence of oscillatory synchronization. A 95%
confidence level was determined by calculating a coherence value given

by 1�(1�a)
1

0.375�L�1	 , where a � 0.95, L is the number of windows used,
and the factor 0.375 results from Hanning window weighting (Halliday
and Rosenberg, 2000). This value or greater was considered to indicate a
significant probability ( p � 0.05) of synchronized oscillatory activity
between two cells. For statistical analysis of the autospectra, the elements
of the interspike intervals of each spike train were randomly shuffled, and
the power spectrum of the resulting (random) spike train was calculated
(Soares et al., 2004). The mean and SD of the resulting power spectra of
20 iterations of shuffled data were computed. Peaks in the power spectra
of the original data stream were considered significant if they were at least
5 SD greater than the mean of the shuffled data. An autospectrum (resp.
coherence function) displaying one or more significant peak(s) is re-
ferred to an oscillatory spectrum [respectively (resp.) coherence].

The reduced model
We will also consider a simplified version of the model described above,
which has the advantage that several aspects of its dynamics can be in-
vestigated analytically. The knowledge of the properties of this reduced
model will guide us in the investigation of the detailed model.

In the reduced model, the connectivity between two interacting pop-
ulations � and � (� presynaptic to �) is all-to-all (e.g., Jijk

�� � J �� � 1 for
any neuron i and j in population � and �, respectively). To make the
analysis more tractable, we also assumed that there is no noise in the
system. The thresholds are assumed to be the same for all the neurons in
a given population. Therefore, all the neurons in a given population
receive the same total synaptic input. Hence, the dynamics of the system
can be fully described in terms of 12 activity variables, mk

��(t).
The steady states of the network for time-independent external inputs

as well as their stability can be determined analytically as a function of the
synaptic weights, the external inputs, synaptic delays, and synaptic time
constants.

The steady states of the network
Steady states of the network are obtained by solving the fixed point
equations for the dynamics. Here, we focus on the steady states when the
external inputs are nonselective (i.e., the external inputs are the same for
the two circuits). Obviously, by symmetry, solutions of the fixed point
equations in which the activities in the two circuits are the same always
exist. We will call such solutions “symmetric” steady states. In particular,
states in which the total inputs are above threshold for all the populations
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are symmetric. In these states, referred below as “linear steady states,” the
activities are determined by a set of linear equations that can be solved
straightforwardly (see Appendix, Eqs. 26 –30). To be consistent, such a
solution must fulfill the condition that all the inputs are above threshold
(five conditions).

Other symmetric steady states, in which the total input to at least one
of the neuronal populations in each circuit is under threshold, may exist.
In such states, at least one of the feedback loops is open. For a given set of
synaptic parameters, several such steady states may coexist. They can also
coexist with the linear steady state.

Under certain conditions that are analyzed below, symmetry breaking
occurs and the response of the network is asymmetric (populations from
the two circuits display different levels of activity) despite the fact that the
external inputs are the same on both circuits. This second type of solution
exists because of the threshold nonlinearities of the transfer functions. As
we will see below, these solutions play a central role in the ability of the
BG network to perform action selection.

Stability of steady states
A fixed point solution of the dynamical equations is stable if any small
perturbation around it eventually decays at large time. If certain pertur-
bations increase with time, the fixed point is unstable.

To investigate the stability of a steady state, we need to study the
equations of the dynamics linearized around that state and look for so-
lutions of the following form (Strogatz, 1994):

�mk
���t	 � �k

��e
t. (13)

This is a solution for the linearized dynamics, provided that 
 satisfies a
transcendental equation, P(
) � 0, which depends on the coupling
strengths, delays, and synaptic time constants. The solutions to this equa-
tion are in general complex numbers. The steady state is stable provided
that Re(
) � 0 for all the solutions. It is unstable if at least one solution
with Re(
) � 0 exists. If, for this solution, Im(
) � 0, the system under-
goes a nonoscillatory instability. If Im(
) � 0, the instability is an Hopf
bifurcation (Strogatz, 1994) at a frequency � � Im(
). In general, at the
onset of an instability, the spatial structure of the unstable mode is ob-
tained by determining the prefactors �k

��.
In the case of linear steady states, one finds that (for details, see

Appendix):

P�
	 � 
�1 � 
�	��1 � 
	4 � G�e�

�	 � G��1 � 
	e�

��2

� �2G�
2 e�2

��1 � 
	2 (14)

with:

G� � GCtxThGThGPiGGPiStrGStrCtx (15)

G� � GCtxThGThGPiGGPiSTNGSTNCtx (16)

and


� � 
CtxTh � 
ThGPi � 
GPiStr � 
StrCtx (17)


� � 
CtxTh � 
ThGPi � 
GPiSTN � 
STNCtx (18)

� � �STNCtx/�. (19)

Note that G� and G� are the products of the synaptic strength along the
direct (positive feedback) and hyperdirect (negative feedback) loops re-
spectively and that 
� and 
� are the total delays along these two loops.

In other steady states that play an important role in our analysis, the
cortical population is silent in one of the circuits, whereas all of the
populations in the other circuit are active. These states are nonsymmet-
ric. For these states, the function P(
) is as follows (for details, see
Appendix):

P�
	 � �1 � 
�	�1 � 
	4 � �1 � 
�	G�e�

�

� �1 � 
	G�e�

�. (20)

Finally, note that steady states in which all the feedback loops are open are
always stable.

Results
The properties of the reduced model
The phase diagram of the reduced model for nonselective time-
independent external inputs
In this section, we consider the case of nonselective external in-
puts [i.e., we assume that the inputs to the cortex are the same in
the two circuits (� � 0) and that there is no external input to the
striatum (Hk

Str � 0 for k � 1,2)].
When the total synaptic input to the cortical populations is

smaller than the threshold TCtx, they are inactive. This happens in
particular if the external input to the cortex is too small, for
H Ctx � Hrest

Ctx, where Hrest
Ctx is given by Equation 32 in the Appendix.

Note that, if H Ctx satisfies this condition, the state of the network
does not depend on H Ctx. Note also that the rest state is always
stable, because all of the feedback loops are open in that state.

For sufficiently large external input to the cortex, the feedback
is suppressed in the direct and hyperdirect loops, because either
the GPi or the thalamus becomes inactive. If G� � G�, the GPi is
silent in the two circuits for H Ctx � Hmax1

Ctx , where Hmax1
Ctx is given

by Equation 33 in the Appendix. Similarly, if G� � G� and
H Ctx � Hmax2

Ctx , where Hmax2
Ctx is given by Equation 34 in the Ap-

pendix, the thalamus is strongly inhibited by the GPi and it be-
comes inactive in the two circuits.

For intermediate values of the external input to the cortex,
H Ctx, (Hrest

Ctx � H Ctx � Hmax1
Ctx if G� � G� or Hrest

Ctx � H Ctx � Hmax2
Ctx

if G� � G�), the linear steady state in which all the populations
are active in the network exists. As explained in Materials and
Methods, in this state, the activities of the various populations are
determined by a set of linear equations (see Appendix, Eqs. 26 –
30). This state is symmetric (i.e., the activities in the populations
are the same in the two circuits). In particular, the activities of the
cortex in the two circuits are as follows:

Ak
Ctx �

HCtx � I0 � TCtx

1 � G� � �1 � �	G�
k � 1, 2, (21)

where I0 is given by Equation 31 in the Appendix.
We now consider the stability of the linear steady state (see

Materials and Methods).
Nonoscillatory instabilities. Such an instability occurs when a

real eigenvalue, 
, changes its sign from negative to positive as a
control parameter is varied. This happens if P(0) � 0 [for the
definition of the function P(
), see Eqs. 14 and 20]. Two non-
oscillatory instabilities may occur, one for the following:

1 � G� � �1 � �	G� � 0 (22)

and the other for the following:

1 � G� � G� � 0. (23)

Calculation of the coefficients �k
�� (Eq. 13) shows that, for the

first of these instabilities, the unstable mode is inhomogeneous
[i.e., this instability breaks the symmetry between the two circuits
(Fig. 3A)]. This symmetry-breaking instability requires strong
feedback in the direct loop but also sufficiently strong negative
feedback in the hyperdirect loops. Its occurrence can be intu-
itively understood as follows. If activity is increased in the cortical
population of one of the two circuits, the strong positive feedback
in this circuit amplifies this increase. In contrast, the cortical
populations in the two circuits tend to inhibit each other via the
negative polarity “cross-path” Ctx–STN–GPi–Th–Ctx, which
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goes from the cortical population in one
circuit to the other one in the other circuit.
As a result, the increase in the activity of
one cortical population reduces the total
input received by the other one, and hence
its activity is reduced. If this effect is suffi-
ciently strong, it breaks the symmetry be-
tween the two circuits.

Oscillatory instabilities. An oscillatory
Hopf instability occurs if the real part of a
complex eigenvalue changes sign when a
control parameter is varied. Therefore, at
the onset of an oscillatory instability, 
 �
i� is pure imaginary. The complex equa-
tion P(i�) � 0 determines the values of �
and the conditions that G�, G�, 
�, 
�, �
satisfy at the instability onset.

The instability condition simplifies if
one assumes that 
� � 
�' 
 and � � 1. Then one finds that
the linear steady state undergoes a Hopf instability for the
following:

G� � G� � G0�
, �	, (24)

where G0 and � are determined by Equations 36 and 37 (see
Appendix). In particular, the frequencies of the unstable modes
depend only on the synaptic delays. For a given value of 
, Equa-
tion 36 has an infinite discrete set of solutions, �n, n � 1, 2, . . . ;
�1 � �2 � . . . . The solution �n corresponds to a mode that is
unstable when G� is larger than the critical value G�

c � G� �
G0(
, �n ). Hence, the stationary fixed point first becomes un-
stable via the mode n � 1, for which G�

c is the smallest. The
frequency of this mode at instability onset is plotted in Figure 3C
as a function of 
. It decreases monotonically with 
. For 
 � 0,
� � 31.8 Hz. For 
 � 20 ms, � � 12.8 Hz.

Using simulations, we determined the frequency of the actual
oscillations that developed at the instability onset for G� � 2.85
for several values of 
. As shown in Figure 3C (circles), in the
range of delays we explored, the frequency is extremely well ap-
proximated by the imaginary part of the instability eigenvalue.

The oscillatory instability (Fig. 3B) is driven by the negative
feedback in the hyperdirect loops, which induces oscillations if it
is sufficiently strong. This is because an increase in the activity of
the cortical populations in the two circuits leads, through this
negative feedback, to a decrease in the input that feeds back from
the network to both cortical populations. This decrease opposes
the initial increase in cortical activities. If it is strong enough,
oscillations occur. The positive feedback present in the direct
loop compensates for this tendency. This is the meaning of Equa-
tion 24.

Clearly, in the unstable mode, oscillations are present in all of
the populations in each circuit. The oscillations of the two circuits
are in-phase, but different populations in the same circuit oscil-
late with some phase shifts that are functions of the various syn-
aptic delays.

The phase diagram of the reduced model. The results described
above concerning the stability of the linear steady state can be
summarized in a phase diagram in the plane (G�, G�) like the
one shown in Figure 4. This phase diagram corresponds to the
case 
� � 26 ms, 
� � 20 ms, � � 5 ms, and � � 4. The linear
steady state is stable in the region between the dashed and the
solid line.

On the solid line, the linear steady state undergoes a

symmetry-breaking instability. Below this line, G� � G�, and the
symmetric linear steady state exists if the external input to the
cortex is such that Hrest

Ctx � H Ctx � Hmax1
Ctx , where Hrest

Ctx and Hmax1
Ctx

are given by Equations 32 and 33 in the Appendix. However,
because of the symmetry-breaking instability in this region, any
small asymmetric perturbation leads the system to an asymmetric
state in which the cortical population is active in one of the cir-
cuits but is inactive in the other. Because of the symmetry be-
tween the two circuits, there are two such states. They differ in
terms of the circuit which has an active cortical population. The
activity of the cortex in the circuit where it is active is as follows:

Ak
Ctx �


HCtx � I0 � TCtx��

1 � G� � G�
, (25)

where TCtx is the threshold of the cortical neurons and I0 is given
by Equation 31 in the Appendix. These two states also differ in
term of the activity in the other populations. In particular, activ-
ity in the GPi is smaller in the circuit in which the cortex is active
than in the circuit in which it is inactive. As a consequence, activ-
ity in the thalamus is greater in the former circuit than in the
latter. The stability boundary of these latter states, given by Equa-
tion 23, is represented by the dotted line.

On the dashed line, the linear steady state undergoes an oscil-
latory Hopf bifurcation driven by the negative feedback on the
hyperdirect loop. This instability to oscillations depends on 
�,

�, and �. In the special case in which 
� � 
� and � � 1, the
corresponding line in the phase diagram is straight. This is not the

Figure 3. Instabilities of the symmetric fixed point solution of Equations 1– 6. In A and B, the network settles at the unstable
symmetric fixed point at t ��500 ms. It remains there until t � 0 when the cortical population in circuit 1 is perturbed by a brief
external current. After a short while, an instability develops. Red, Cortex; black, thalamus; blue, GPi. Solid (resp. dashed) lines, The
activities in circuit 1 (resp. circuit 2). A, Symmetry-breaking instability for G� � 2.47, G� � 2.85. The network ends in an
asymmetric state in which the cortical population is active in one circuit alone. B, Oscillatory instability for G� � 0.18 and G� �
2.85. The network settles in a homogeneous oscillatory state. C, Solid line, The frequency of the unstable mode at instability onset
as a function of the overall delay 
 derived from Equation 36. Circles, The frequency of the oscillations as a function of 
 at the
instability onset for G� � 2.85.

Figure 4. The phase diagram for the various dynamical regimens of the reduced model as a
function of G� and G� for � � 0.4, 
� � 26 ms and 
� � 20 ms. The synaptic time
constant is � � 5 ms for all of the synapses except synapses from the cortex to STN for which
�STNCtx � 20 ms.
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case in general. For instance, if 
� � 
�, or if � � 1, this line is
shifted toward larger values of G� and it is convex as shown in
Figure 4.

When G� � 1 � G�, Ak
Ctx in Equation 25 diverges. This indi-

cates that the asymmetric state becomes unstable on this line (Fig.
4, dotted line). In fact, in the region G� � 1 � G� (below the
dotted line), a detailed analysis shows that depending on the
external input, H Ctx, one, two, or three stable steady states exist.
In all of these states, the two feedback loops are open. If H Ctx �
Hmax1

Ctx , only one steady state exists in which the cortical popula-
tions are inactive in the two circuits. If Hmax1

Ctx � H Ctx � Hrest
Ctx, this

steady state still exists, but it coexists with two other states in
which the cortical population is active in one of the two circuits
and the GPi population is silent, whereas in the other circuit, the
cortical population is silent and the GPi population is active.
Thus, for these parameters, the network displays tristability. If
Hrest

Ctx � H Ctx, only two asymmetric states coexist.
The phase diagram of Figure 4 was obtained with the values of

the synaptic delays given in Table 1. These parameters are suffi-
cient to reproduce recent experimental results on response laten-
cies in BGs after cortical stimulation (Nambu et al., 2000) (see
below). In particular, the latency from the STN to the GPi is
smaller than from the Str to GPi, and the overall latency is shorter
in the hyperdirect pathway than in the direct pathway (
� � 26
ms; 
� � 20 ms). We also studied the phase diagram as a func-
tion of the parameters. We found that the location of the
symmetry-breaking bifurcation does not depend on the delays,
but the location of the bifurcation to oscillations does. However,
the phase diagram remains qualitatively the same in a range of
delays compatible with the data reported by Nambu et al. (2000)
(data not shown).

Response of the network to an external transiently selective input
in the various regimens
With the network parameters given in Table 1 and in the absence
of external input, the average firing rates of the GPi, thalamus,
STN, striatum, and cortex are 80, 20, 25, 0, and 0 spikes/s, respec-
tively. Moreover, the negative feedback of the hyperdirect loop

generates oscillations if it is not compensated for by a sufficiently
strong positive feedback in the direct loop. Hence, as the strength
of the corticostriatal interactions decreases, the parameter G�

decreases and the network moves in the phase diagram from the
symmetry-breaking regimens, to the linear regimen and eventu-
ally to the oscillatory regimen.

In this section, we describe how the network responds in these
various regimens to a time-dependent input that is nonselective
on the cortex (� � 0) and transiently and slightly selective on the
striatum. This input is shown in Figure 5A. The nonselective
input to the cortex and the slightly selective input to the striatum
start at the same time. The input to the striatum has a duration of
200 ms.

Selectivity in the symmetry-breaking regimen. The response of
the network in this regimen is shown in Figure 5B. At the input
onset, the cortical populations in the two circuits are activated in
the same way. Hence, initially, the striatal neurons in both cir-
cuits receive the same excitation from the cortex. However, the
transient input to the striatum, which is slightly larger in circuit 1,
induces a slight difference between the activities of the striatum in
the two circuits, with the striatum in circuit 1 being more active.
Just like the brief external input in Figure 3A, this transient stri-
atal input induces a symmetry breaking in the system. As a result,
the cortex becomes more active in circuit 1 than in circuit 2. After
the transient component of the external input is over, the differ-
ence between the activities in the two circuits persists and even
amplifies. This is the outcome of the symmetry-breaking insta-
bility that drives the network toward an asymmetric state in
which the cortical population in one of the circuits is quiescent.
Therefore, in this regimen, a transient weakly biased input to the
striatum is sufficient to induce a strongly asymmetric response of
the cortex even if the two cortical populations are activated ex-
actly the same way. In this sense, the cortex–BG network is able to
perform action selection.

Linear regimen. The network is in this regimen if the cortex–
striatum synaptic efficacies are not strong enough to achieve sym-
metry breaking but are sufficiently strong to compensate for the
oscillations induced by the negative feedback of the hyperdirect
loop. In this regimen, the nonselective input to the cortex leads to
coactivation of both cortical populations (Fig. 5C). The GPi neu-
rons also increase their activity in relation to this additional in-
put. This is because the excitatory input on the GPi coming via
the hyperdirect pathway increases more than the inhibitory input
coming via the direct pathway. The striatal selective input in-
duces a transient, small asymmetry between the activities in the
two circuits. This asymmetry is proportional to H Str (data not
shown). However, once the striatal input is over, the symmetry
between the two circuits is rapidly restored, and the activities in
the cortex are the same in the two circuits. Hence, in this regimen,
once the transient input to the striatum is over, the response of
the cortex is qualitatively similar to what would happen in the
absence of the cortex–BG–thalamus network. The effect of the
latter is only to change the value of the gain of the effective input–
output relation of the cortical neurons.

Oscillatory regimen. If the weight of the corticostriatal syn-
apses is too small, the direct loop cannot prevent the oscillations
from appearing. Hence, when the cortex is activated, the network
tends to develop oscillatory activity. As in the linear regimen, the
input to the striatum induces a transient asymmetry in the re-
sponse of the two circuits, which rapidly decays once the input to
the striatum is over. The pattern of the response is shown in
Figure 5D. Interestingly, if H Ctx is sufficiently strong, the oscilla-
tions are suppressed because the activity of the GPi becomes so

Table 1. Values of the various parameters of the model

Reduced model Detailed model

GGPiStr 12 16
GThGPi 0.3 0.2
GThCtx 0.97 1.25
GSTNCtx 2 2
GGPiSTN 3.4 12.5

StrCtx 6 6

GPiStr 10 10

ThGPi 5 5

ThCtx 5 5

STNCtx 5 5

GPiSTN 5 5
TCtx 0.1 0.11
TStr 0 See Eq. 10
TGPi 0.1 1.35
TSTN �0.1 �0.08
TTh �0.25 �0.185
� 0.4 0.4
	ctx 0 0.03
	str 0 0.005
	GPi 0 0.05
	cha 0 0.05
	STN 0 0.02

Delays are in milliseconds. GStrCtx varies with the level of striatal DA as indicated in Equation 11.
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strong that it completely inhibits the thal-
amus. The feedback is then suppressed in
the hyperdirect loop and the system can-
not display oscillations. This is shown in
Figure 5E.

The multistability regimen. The re-
sponse of the network in the multistability
regimen is shown in Figure 5F. The exter-
nal input induces an asymmetric response
of the network because the symmetric
steady state is unstable. One cortical pop-
ulation is activated, whereas the other is
inhibited, as in the symmetry-breaking
regimen. However, in contrast to what
happens in this latter regimen, the strong
positive feedback sustains the activity in
the active cortical population and the net-
work remains in an asymmetric state even
after removal of the external input. Hence,
the network displays multistability be-
tween the rest state and the two asymmet-
ric states. This regimen can be relevant for
modeling the physiology of the substantia
nigra pars reticulata, where selective de-
layed activity is found (Hikosaka et al.,
2000). However, a detailed study of the
behavior of the network in this region of
the phase diagram is beyond the scope of
the present study.

The physiological regimen. Symmetry
breaking occurs in the whole region of the
phase diagram below the solid line. This
region can be divided into two parts. Be-
tween the solid and the dotted line, the
network is monostable. Below the dotted
line, it displays multistability. In this regi-
men, the positive feedback sustains the ac-
tivity and prevents the network to return
to rest state after the removal of the exter-
nal input, inducing persistent activity. We
interpret the first of these regions as the
one in which the system (which represents
the motor part of the BG– cortical network) performs normally.
The fact that the size of this region is reduced means that normal
function can only be achieved for a right balance between the
hyperdirect and direct feedbacks. We will show in the framework
of our more detailed model that dopamine depletion disturbs this
balance, because it reduces G�, leaving G� constant. As a conse-
quence, selectivity is impaired, because the DA level is reduced. If
G� is large, oscillations can emerge for sufficiently strong DA
depletion. Interestingly, the range of G� for which the system
behaves “normally” is broader for larger G�. Hence, the propen-
sity of the network to display pathological oscillations increases
with the robustness of its functional state.

The detailed model
A major asset of the reduced model is that its phase diagram can
be derived analytically. This allows us to show how the BG net-
work can perform action selection and how this ability is lost if
the feedback on the direct loop is too weak. We also show that
oscillatory activity can emerge in the BG network if the feedback
in hyperdirect pathway is strong and the feedback in the direct
pathway does not compensate for it.

However, our reduced model is too simplified to account for
the resting properties of the BG network, because in this model,
in the absence of external input the cortex is not active. This
prompted us to investigate the more realistic model of the cor-
tex– basal– ganglia network described above (see Materials and
Methods, Numerical simulations of the detailed model). In this
model, the connectivity is random, the thresholds of striatal neu-
rons are distributed, and noise is present in all of the populations.
The parameters (synaptic strength, delays, thresholds) of the
model are given in Table 1. Note that the synaptic strength, G��,
and the thresholds of the neurons have been modified compared
with their values in the reduced model. With these synaptic cou-
pling values, the feedback in the hyperdirect loop is strong
enough to induce oscillatory activities driven by this loop (see
below).

The resting state in the normal situation (D � 100%)
Neuronal activities at rest for D � 100%. We define the rest state of
the network as the state in the absence of external inputs. In
contrast to the reduced model, in the detailed model, the neurons
in the cortical and striatal populations display some low but non-
zero level of activity at rest. This is because noise is present in their

Figure 5. The responses of the reduced network model to a weakly and transiently selective external input in the various
regimens of the phase diagram. Network parameters are given in Table 1. Activities in and inputs to circuit 1 (resp. circuit 2) are
plotted with solid lines (resp. dashed lines). A, The external input. Top, The input to the cortical populations in the two circuits.
Bottom, The input to the striatum. The responses of the cortex (red), the thalamus (black), and the GPi (blue) are plotted in B, the
symmetry-breaking regimen (GStrCtx � 0.7); C, the linear regimen (GStrCtx � 0.4); and D, the oscillatory regimen (GStrCtx � 0.05).
Note that only one cortical population is activated in the symmetry-breaking regimen (B), whereas both populations are activated
in the other regimens. E, The response of the network to a strong cortical input in the oscillatory regimen (GStrCtx � 0.05). The
striatal input and the profile of the cortical input are as in A. The amplitude of the latter has been increased by a factor of 3. The
oscillation is suppressed because the thalamus is silent, and subsequently the feedback loops are open. F, The response of the
network to the input displayed in A in the multistability regimen (GStrCtx � 0.9). As in the symmetry-breaking regimen, one
cortical population is activated, whereas the other is silent.
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input. For the chosen parameters, the average activity of the cor-
tical neurons is �5 spikes/s. In the GPi, STN, thalamus, and
striatum, the activities are 80, 20, 25, and 0.6 spikes/s, respec-
tively. In the GPi and striatum, the average activities are broadly
distributed as shown in Figure 6A. In particular, the distribution
of the activity in the striatum is very skewed, with one-half of the
neurons completely quiescent.

In this rest state, there is no symmetry breaking and the aver-
age and distribution of activity in populations of the same type
are the same in the two circuits. This is because the activity in the
striatal populations is very low. In fact, as shown in Figure 6D, the
effective transfer function of the striatal neurons in the presence
of noise is nonlinear, and the effective gain of the striatal neurons
is decreased for low activities. Hence, the effective feedback of the
direct loop is too small for symmetry breaking to occur in the rest
state. Nevertheless, in the normal rest state, the feedback in the
direct loop is sufficiently strong to compensate for the oscillatory
instability driven by the negative feedback in the hyperdirect
loop. This is clear from Figure 6, B and C, which shows that the

activities in cortex, thalamus, and GPi do
not oscillate and are not synchronous
across neurons.

Response of the neurons to brief cortical
stimulations. The emergence of oscilla-
tions and their frequency depend on the
delays in the various pathways (for values,
see Table 1). Therefore, it is important to
verify that the values we have selected for
these parameters are compatible with ex-
perimental data.

One way to characterize these delays is
by looking at the dynamics of the activity
changes in the different populations fol-
lowing a brief and sufficiently strong stim-
ulation in the cortex. This approach has
been used in several experimental studies
(Deniau et al., 1978; Maurice et al., 1998;
Nambu et al., 2000). In particular, Nambu
et al. (2000) showed that a cortical stimu-
lation induces triphasic response in the
GPi with an early excitation followed by a
suppression and by a late excitation. They
argued that the early excitation was medi-
ated by the hyperdirect pathway and that
the suppression was mediated by the di-
rect pathway. They also argued that the
hyperdirect pathway contributes to the
late excitation, because inactivation of
the GPe did not completely eliminate this
phase of the response.

To compare the behavior of our model
with the results of Nambu et al. (2000), we
studied the response of the network to a
brief (1 ms duration) stimulation in the
cortical population in one of the circuits.
The population response of a group of 20
neurons in the GPi is shown in Figure 7. It
displays a triphasic pattern (Fig. 7, top
graph) with an early excitation followed,
10 ms later, by a strong inhibition lasting
�25 ms and by a late excitation before a
decay to baseline. Similar patterns are
found in the PETH or in the raster plot of

single unit activities. The origin of this triphasic response in our
model can easily be understood. The early excitation is attribut-
able to the hyperdirect pathway. Indeed, the delay along this
pathway is shorter than the one along the direct pathway. The
suppression of activity that follows it, is mediated by the direct
pathway. The late excitation is attributable to the feedback GPi–
cortex–GPi. In fact, as a result of the suppression of activity in GPi
(second phase), the activity in the cortex and in the STN increase.
This induces a reexcitation of the GPi. Hence, the behavior of our
model is in line with the results of Nambu et al. (2000). However, a
late disinhibition of the STN through the indirect pathway may also
contribute to the late component of the response (Maurice et al.,
1998). Another contribution for the reexcitation may be a rebound
after inhibition through the direct one (Nambu et al., 2000). How-
ever, these effects cannot be accounted for in our simplified model.

Action selection in the normal situation (D � 100%)
We now show that, in the detailed model, the BG network is able
to perform action selection as in the reduced model. The input to

Figure 6. Neuronal activities in the network at rest. A, The distributions of the average spontaneous firing rates of striatal and
GPi neurons. B, Population activities of groups of 20 neurons randomly chosen in the GPi (blue lines), the thalamus (black lines),
the STN (yellow lines), the cortex (red lines), and the striatum (cyan lines). C, Correlation matrix of three GPi neurons. Diagonal,
Autocorrelograms. Off-diagonal, Cross-correlations. D, The effective input– output transfer function of a neuron in the striatum in
the absence (gray line) and in the presence of noise (black line, SD of the noise given in Table 1). In the presence of noise and for low
input, the effective gain of striatal neurons is reduced.
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the cortex and to the striatum during preparation and execution
of an action are modeled as in the reduced model, except that now
a noisy nonselective component is added to both inputs (see
Materials and Methods). They are shown in Figure 8A.

The response of the network is depicted in Figure 8B. Before
the input onset (at t � 500 ms), the activities in the various
populations are at their spontaneous level and the network is in a
symmetric state. After this onset, the activities in the cortical
populations of the two circuits begin to increase. The transient
selective external input to the striatum induces an asymmetry
first between the GPi of the two circuits and after a short while in
all of the other populations of the network. In particular, the
activity in the cortical population in one of the circuits becomes
significantly larger than its rest level, whereas it is reduced in the
other network. This asymmetry persists even after the transient
striatal input is over. Only when the network is back to rest does
the state become symmetric again. Hence, as in the reduced
model, the cortex–BG network can perform action selection. The
action that is selected is the one implemented by the circuit in
which the transient striatal input is the largest. In the example
shown in Figure 8B, the state of the network is also selected
according to this rule.

As in the reduced model, the GPi populations in the two cir-
cuits respond with opposite polarity to the
additional input. However, the random
connectivity induces some diversity in the
single unit responses as shown in Figure
8C. Although the average population ac-
tivity in the GPi decreases in the circuit
associated with the selected action, the ac-
tivity of some of the neurons in that pop-
ulation can remain practically not
changed.

The external inputs act directly on the
cortical and striatal populations. As a re-
sult, changes in activity in these popula-
tions precede the modifications of activity
in other populations. A detailed analysis
(see Materials and Methods) shows that
the latency of the response of the cortical
neurons can be �20 ms after external in-
put onset, whereas it is �90 ms for the
GPi. However, it is important to note that
early cortical activity is not selective, and it
is only after the feedback has become ef-
fective that activity in the cortex becomes
different in the two circuits.

The effect of DA depletion on action
selection and activity patterns
In our model, DA depletion affects the
corticostriatal synapses by reducing their
strength. Therefore, when DA decreases,
G� becomes smaller. DA depletion also
affects the threshold of the striatal neu-
rons: the average value of the threshold
distribution decreases when there is less
DA. In this section, we investigate the impact of these effects on
the dynamics of the detailed model.

Changes in the time average activities. Figure 9A displays the
time and population average of cortical and pallidal activities in
the rest state as a function of the DA level (solid line). The aver-
aged activity of the GPi remains essentially constant when the DA

decreases, whereas in the cortex it increases by �20% for full DA
depletion. These changes are small because of the competition
between the effects of DA on the corticostriatal transmission and
on the striatal threshold. On one hand, the synaptic input from
the cortex to the striatum decreases with the DA level, and this
tends to reduce activity in the striatum. On the other hand, the

Figure 7. Neuronal response in the GPi after a cortical stimulation in the normal state (D �
100%). At t � 100 ms, a brief excitatory stimulation, lasting 5 ms, is applied to the cortex. From
top to bottom, population activity averaged over 20 neurons in GPi, PETH of one GPi neuron
aligned on the cortical stimulation (30 repetitions), and the corresponding raster plots are
shown. The response of the GPi is triphasic.

Figure 8. Action selection in the normal situation (D � 100%). A, Top, In gray, the nonselective external input to the cortex. In
black, average over 100 trials of the input. The input is zero outside the double arrow. The bell shape is given by Equation 7 with
�� 0, H1

Ctx � 0.15, tm � 750 ms, and Dmvt � 500 ms. Bottom, The transient and weakly selective input to the striatal population
in circuit 1 (black) and circuit 2 (gray) (Eq. 9 with H Str � 0.001). B, Activities averaged over a population of 20 neurons in GPi (top),
thalamus (middle), and cortex (bottom) in response to the input depicted in A. Black, Circuit 1; gray, circuit 2. C, PETH of four units
in GPi. D, Four units in the cortex. In C and D, Left (top and bottom), circuit 1; right, circuit 2.
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threshold of the striatal neurons also decreases with the DA level,
and this compensates for the effect on the reduction of the corti-
costriatal synaptic strength. For comparison, Figure 9A, dashed-
dotted line, plots the activity of the GPi as a function of DA if one
assumes that DA depletion only affects the corticostriatal syn-
apses but not the striatal threshold. In this case, GPi activity in-
creases when DA is depleted.

The effect of DA depletion on the GPi and cortical activities
becomes more significant when the input to the cortex is large.
This is because the reduction in GStrCtx has more effect on striatal
activity for large external input to the cortex, whereas the effect of
the change in threshold remains the same. Thus, these two antag-
onist effects do not compensate for high external input to the
cortex and the average activities are more dependent on the DA
level in response to an input such as the one in Figure 8A than at
rest. In fact, the GPi becomes hyperactive by �20%, whereas the
cortex becomes hypoactive by �40% in the former situation.

The ability to perform action selection is lost when the DA level
decreases. Because DA depletion reduces the feedback in the di-
rect loop, it induces an impairment of the ability of the BG net-
work to perform action selection. This is depicted in Figure 9B,
where the responses of the cortex and the GPi to the input of
Figure 8A are shown separately for the two circuits. For D �
100%, the responses in the two circuits are different because the
BG network performs action selection as described above. The
difference is reduced when DA decreases and eventually it be-
comes negligible for D � 70%. Hence, overly strong DA deple-
tion induces a complete loss of the action selection ability.

The loss of selectivity for D � 70% is also depicted in Figure

10A. The two top panels display the external inputs to the cortex
and the striatum. The bottom three panels show the correspond-
ing responses in the pallidal, thalamic, and cortical populations in
the two circuits. During the first 200 ms of external input, the
activities are slightly different from one circuit to the other. How-
ever, this asymmetry is attributable to the transient selective com-
ponent of the input and disappears once this component is over.
Hence, the BG network is not able to perform action selection any
more.

Rest activity becomes oscillatory and synchronous when the DA
level is very low. Another effect of DA depletion on the dynamics
of the network is the change in activity pattern of the neurons.
Activity in the rest state becomes oscillatory and synchronous
when the DA level is sufficiently low. These synchronous oscilla-
tions emerge because as DA is depleted the positive feedback in
the direct loop decreases because the efficacy of the corticostriatal
synapses is reduced. When this feedback is too weak to counter-
balance the negative feedback in the hyperdirect loop, oscillations
appear. For the parameters of Table 1, this happens for DA �
35%. The oscillations are shown in Figure 11A for D � 20%.
Their frequency, which is �11 Hz, is fairly insensitive to the DA
level (for D � 0, the frequency is 10 Hz) (data not shown). This
contrasts with the amplitude of the oscillations, which increases
significantly when DA decreases. It is 1.7 times larger for D � 0

Figure 9. Activities in GPi and cortex as a function of the DA level. A, Population activities in
GPi (left) and in cortex (right). The activities are averaged over 20 neurons chosen at random in
the GPi or cortex in the two circuits and over 10 trials. The activity was averaged over a 200 ms
window starting 200 ms after the input onset (see Materials and Methods). Solid lines, Rest
state. Dashed lines, Activities in response to the input plotted in Figure 8 A. The average striatal
threshold and strength of corticostriatal synapses are given by Equations 10 and 11 for the solid
and dashed lines. Dashed dotted line, Rest state for constant average striatal threshold. The
strength of corticostriatal synapses is still given by Equation 11, but the average threshold of
striatal neurons is TStr � �0.02 and no longer depends on the level of DA. Note that the GPi
average rest activity is increasing with DA depletion in this case. B, Population activities (20
neurons; 10 trials) in response to the input of Figure 8 A. Left, GPi; right, cortex. Black, Circuit 1;
gray, circuit 2. In the normal condition (D � 100%), symmetry breaking occurs and the activi-
ties in the two circuits are different. As DA is depleted, this difference diminishes and symmetry
is restored for D � 70%. Figure 10. Response of the network after partial DA depletion (D � 70%). A, The external

input is the same as in Figure 8 A (striatal input not shown). B, The population activity of a group
of 20 neurons in GPi (top panel), thalamus (middle panel), and cortex (bottom panel). Black,
Circuit 1; gray, circuit 2. The transient selective input to the striatum induces a small difference
in the activities of the two circuits. This difference disappears after the selective input to the
striatum is over.
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than for D � 20%. Interestingly, the oscillations are hardly visible
in the spike trains of individual neurons (Fig. 11A, raster plots)
but are revealed by the autocorrelations and cross-correlations of
neurons (Fig. 11B).

Despite the change in activity pattern in the network, the dis-
tribution of time average spontaneous firing rates in the GPi is
not substantially affected by DA depletion. This can be seen in
Figure 11C (D � 20%), which shows that this distribution is very
similar to the one in the normal condition (compare with Fig. 6).
This is consistent with the weak dependence of the rest popula-
tion activity in the GPi when DA is depleted (Fig. 9). Note that the
assumption that DA increases striatal average firing threshold is
not crucial for the loss of action selection and the emergence of
oscillations. However, as explained above, it is required to keep
the average spontaneous activity of the GPi neurons almost un-
changed as dopamine is depleted.

Suppression of oscillations in the presence of strong external in-
put to the cortex. The activity pattern is also oscillatory in response
to an external input to the cortex provided it is not too strong.
This is shown in Figure 12A for an input that, for D � 100%,
would select an action. In contrast, for D � 20%, the response of
the network is symmetric: the two circuits respond in the same
way, with an average level of activity that is significantly lower
than in the normal situation and with pronounced synchronous
oscillations. However, the oscillations are suppressed if the am-
plitude of the external input is sufficiently strong as shown in
Figure 12B. This happens when the GPi is so highly excited via the
STN that it inhibits the activity in the thalamus sufficiently to
bring it in the nonlinear range of the effective input– output
transfer function of the neurons (Fig. 12C). In this range, the gain
of the thalamic neurons is substantially reduced. As a conse-
quence, the feedback in the hyperdirect loop is not sufficient to
induce oscillations.

Although oscillations can be highly suppressed in presence of
a strong input to the cortex, this is not enough to restore the
ability of the BG network to perform action selection. However,
an asymmetric response can still be obtained if the external input
is itself selective. This trivial mechanism in which the BG network
does not contribute to the selection is illustrated in Figure 12C.

Discussion
The hypotheses of the model
Our model assumes that BG– cortical circuits involved in the
execution of different motor programs are made up of feedback
loops. Thus, motor cortical areas are involved in closed loops
within this network (Alexander et al., 1986; Nakano, 2000; Kelly
and Strick, 2004). For instance, the primary motor cortex (M1)
sends information to the motor part of the GPi via the sensory-
motor striatal area (Alexander et al., 1986; Parent and Hazrati,
1995a). It also receives information, relayed by the thalamus,
from the motor part of the GPi (Kayahara and Nakano, 1996;
Hoover and Strick, 1999). Moreover, closed loops exist at a finer
scale. For instance, the direct pathway (Alexander et al., 1986;
Deniau et al., 1996) and the GPi–thalamus– cortex pathways
(Hoover and Strick, 1993; Hoover and Strick, 1999) are somato-
topically and functionally organized. In particular, there is evi-
dence that arm-related areas in M1, striatum, and GPi are in-
volved in closed loops starting and finishing in M1 (Kelly and
Strick, 2004). Local intracortical connections may also contribute
to closing these loops.

Our claim is that competition between the direct and the hy-
perdirect feedback loops plays a key role in the dynamics of BG.
Pathologies of the network dynamics emerge in our model, be-

Figure 11. Rest activity in the GPi after strong DA depletion (D � 20%). A, Top, The popu-
lation activity (averaged over 20 neurons) in the GPi displays oscillations with a frequency �11
Hz. Bottom, Raster plots for the spike trains of the 20 units in the top figure. B, Correlation matrix
of the spike trains of three units in GPi. Diagonal, Autocorrelations. Off-diagonal, Cross-
correlations (see Materials and Methods). C, The distribution of the average firing rates of GPi
neurons for D � 20%. Despite the dramatic change in the pattern of neuronal activity, the time
average distribution does not change greatly after DA depletion [compare with the distribution
in the normal situation (Fig. 6 A)].

3578 • J. Neurosci., March 29, 2006 • 26(13):3567–3583 Leblois et al. • Competition in a Model of the Basal Ganglia



cause we have assumed that DA primarily affects the direct path-
way, in line with current data (but see Cossette et al., 1999; Gray-
biel, 2000).

The indirect pathway has negative polarity, and it may also
contribute to action selection. However, how DA depletion could
affect this contribution depends crucially on the degree of segre-
gation between the direct and indirect pathways. Because recent
experiments indicate that this is incomplete (Aizman et al., 2000;
Wu et al., 2000; Levesque and Parent, 2005), we suggest that the
indirect pathway only plays a secondary role in the emergence of
pathological oscillations in GPi and impairment of movement, in
line with Soares et al. (2004).

We have assumed that only the cortex and the striatum receive
the early command for action execution. This is in line with the
fact that movement-related modifications of activity occur later

in the BG output structures than in the
motor cortex (Brotchie et al., 1991; Mink
and Thach, 1991) and with the involve-
ment of striatal sensorimotor territories in
movement initiation (Gardiner and Nel-
son, 1992; Boussaoud and Kermadi, 1997;
Lee and Assad, 2003).

Effects of DA depletion on the state of
the BG
Hypokinetic symptoms of PD are classi-
cally thought to be attributable to abnor-
mally strong inhibition of the thalamus and
cortex by a hyperactive GPi (Albin et al.,
1989; DeLong, 1990). However, recent ex-
periments in MPTP (1-methyl-4-phenyl-
1,2,3,6-tetrahydropyridine)-treated mon-
keys have found that the mean rates in M1
during periods of immobility do not
change compared with normal situations
(Goldberg et al., 2002). Also, Raz et al.
(2000) failed to find increases in GPi spon-
taneous average activity. Accordingly, in
our model, the changes in GPi and cortical
activity with DA depletion are weak in the
absence of external input but become
larger for large input. Hence, our work
suggests that DA depletion may not affect
the spontaneous average activity but still
can contribute substantially to impeding
the execution of movement.

DA depletion induces loss of func-
tional segregation in the BG and in their
target structure (Filion et al., 1988; Mink,
1996; Boraud et al., 2000; Pessiglione et al.,
2005). We suggest that these pathologies
stem from a reduction of the feedback in
the direct pathways when DA is depleted,
which moves the BG network out of the
symmetry-breaking regimen.

Synchronous oscillations are another
pathology of BG attributable to DA deple-
tion (for review, see Boraud et al., 2002;
Hutchison et al., 2004). Our model indi-
cates that these oscillations may be driven
by the hyperdirect loop when its strong
negative feedback is not counterbalanced
by the positive feedback in the direct loop.

The frequency of the oscillations depends on the delays along the
loops. For the chosen values that are compatible with experimen-
tal data (Nambu et al., 2000), the frequency is �10 –12 Hz, in line
with experiments in nonhuman primate models of PD (Nini et
al., 1995; Raz et al., 2000) and in PD patients (Hutchison et al.,
1997; Brown et al., 2001).

When DA is strongly depleted in our model, the execution of
a program requires a large strongly selective input to the cortex
that suppresses the oscillations. A similar mechanism may ex-
plain the suppression of synchronous oscillations during volun-
tary movement in parkinsonian patients (Levy et al., 2002).

The role of the striatum in the dynamics of the BG network
According to recent estimates (Sandstrom and Rebec, 2003;
Slaght et al., 2004), most of the striatal projection neurons are

Figure 12. Response of the network to external inputs in the high DA depletion condition, D � 20%. Black, Circuit 1; gray,
circuit 2. In A–C, from top to bottom, the input to the cortical populations and the average population activities (20 neurons) in the
GPi, the thalamus, and the cortex are shown. The input to striatal neurons is always the same as in Figure 8. A, The external input
is slightly selective as in Figure 8 A. Oscillatory activities occur in the three populations represented. During input, activity in both
cortical populations increases only slightly. B, The external input to the cortex, which is three time larger than in A, is plotted in the
top panel. The thalamus is strongly inhibited during input. The oscillatory activity in the network is suppressed. C, Response to the
large and strongly selective input to the cortex (�� 0.6) plotted in the top panel. Oscillations are stopped and selectivity is trivially
restored. D, Effective input– output transfer function of neurons in the thalamus in presence of noise (black, SD of the noise given
in Table 1). For comparison, the function without noise is plotted in gray.
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silent at rest, whereas 30% fire at a rate in the range of 0.2–5 Hz.
Our work indicates that, although small, this activity plays a role
in BG dynamics. Because of the high convergence from the stri-
atum to the GPi, one GPi neuron receives input from many stri-
atal projection neurons. The sparse activity in this large popula-
tion allows for the effective gain of the striatopallidal path to be
sufficient to balance the feedback in the hyperdirect loop and
prevent pathological oscillations.

Comparison with other models of BGs
Chevalier and Deniau (Deniau, 1985; Chevalier and Deniau,
1990) have suggested that the direct pathway may facilitate
wanted motor programs via focused disinhibition of specific tha-
lamic neurons. Mink and Thach (1993) argued that a center sur-
round inhibitory pattern of pallidal activity resulting from fo-
cused striatal inhibition combined with diffused excitation from
the STN may provide the basis of program selection. Gurney et al.
(2001a,b) studied a model that is similar in spirit and in which the
BG select the most salient input from a set of incoming cortical
inputs. More recently, Rubchinsky et al. (2003) claimed that the
ability to switch between motor programs depends on an inter-
play between rebound properties of neurons and slow GABAB

synapses in the STN–GP network. In all of these models, the BG
network processes in a feedforward manner cortical information
that is already selective. This is in contrast to our model, which
relies on symmetry breaking. Symmetry breaking has also been
proposed as a candidate mechanism for perceptual decision mak-
ing (Wang, 2002).

Action selection in BG may also be a consequence of a
“winner-take-all” mechanism among striatal neurons interacting
via lateral inhibition (Wickens et al., 1991; Beiser and Houk,
1998). This idea shows similarities with ours: in both cases, selec-
tion emerges from competition among neurons or population of
neurons. However, the effect of lateral inhibition among striatal
output neurons on their overall activity is still unclear (Jaeger et
al., 1994; Tepper et al., 2004; Venance et al., 2004).

One recent theory is that oscillatory activity that appears in BG
after DA depletion can be driven by the STN–GPe network (Plenz
and Kitai, 1998; Bevan and Wilson, 1999; Terman et al., 2002).
Another possibility is that the indirect loop can become oscilla-
tory when DA is depleted (Goldberg et al., 1999). As in our
model, in these scenarios, oscillations are the result of a network
effect. However, they differ as regards the specific network
involved.

Conclusions
The model we have put forward is unique in several respects. To
our knowledge, it is the first dynamical model to address both the
physiology and the pathophysiology of BG in a unified frame-
work. It does not require segregation between direct and indirect
pathways. It explains how the BG can perform action selection,
how this deteriorates gradually when DA is depleted, and why
sufficient DA depletion changes the activity patterns in BG with-
out significantly affecting the average level of spontaneous activ-
ity in GPi. The model also explains the suppression of patholog-
ical oscillations in GPi during movement execution.

According to the behavior of our model, selection ability is
lost before the appearance of oscillations. Oscillations may not
even appear if the feedback in the hyperdirect loop is too small.
This suggests that behavioral changes induced by DA depletion
are not directly related to an increase in the level of synchronicity
in BG neural activity.

Our model predicts that the loss of selection ability is corre-

lated with a change in the proportion of GPi neurons activated in
relation to specific actions (Fig. 13A) and that this occurs before
changes in power spectra of the neural activity, if any (Fig. 13B).
Another major prediction of our model is that synchronous os-
cillations driven by the hyperdirect loop appear in BG after inac-
tivation of the striatum. Consistent with this prediction, Slaght et
al. (2004) showed that striatal projection neurons are strongly
inhibited during spike-and-wave discharges in absence epilepsy.
The strong feedback in the hyperdirect loop, no longer balanced
by the direct loop when the striatum is silent, could then contrib-
ute to the 7–10 Hz oscillatory activity in the BG– cortical loop
during absence seizures. Verifying these predictions further
would be a powerful test of our model.

Appendix
The dynamics of the network in the reduced model can be de-
scribed in terms of global parameters: the products of the synap-
tic strength along the direct (positive-feedback) and the hyperdi-
rect (negative-feedback) loops:

G� � GSTNCtxGGPiSTNGThGPiGCtxTh

G� � GStrCtxGGPiStrGThGPiGCtxTh

the total delays along these two loops:


� � 
CtxTh � 
ThGPi � 
GPiStr � 
StrCtx


� � 
CtxTh � 
ThGPi � 
GPiSTN � 
STNCtx

and the ratio between cortico-STN synaptic time constant and
time constant of other synapses:

� � �STNCtx/�.

Figure 13. Activity pattern and response to action execution in the GPi during progressive
DA depletion. A, Ratio of GPi neurons that are inhibited during action execution for several levels
of striatal DA. Action selection in the model relies on the bimodal response to action execution
in the GPi (one population is inhibited, whereas the other is activated). The decrease in the
proportion of inhibited neurons in the GPi in response to movement reflects the loss of action
selection properties that occur for low DA depletion. B, Ratio of oscillatory autospectra and
coherence for several levels of striatal DA in the model. For each DA level, the spectral analysis is
applied to 40 GPi units (see Materials and Methods). The emergence of synchronized oscillatory
activity occurs only after high DA depletion.
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The linear symmetric steady state
The activities of the various populations when the network is at
the linear fixed point are determined by a set of linear equations.
These equations can be solved straightforwardly. One finds the
following:

Ak
Ctx �

HCtx � I0 � TCtx

1 � G� � �1 � �	G�
(26)

Ak
Str �

GStrCtx�H
Ctx � I0 � TCtx	

1 � G� � �1 � �	G�
� TStr (27)

Ak
STN �

GSTNCtx�H
Ctx � I0 � TCtx	

1 � G� � �1 � �	G�
� TSTN (28)

Ak
GPi � �

I0 � TCtx � HCtx�G� � �1 � �	G�	

GCtxThGThGPi�1 � G� � G�	
�

TCtx � TTh

GCtxThGThGPi

(29)

Ak
Th �

I0 � TCtx � HCtx�G� � �1 � �	G�	

GCtxTh�1 � G� � G�	
�

TCtx

GCtxTh

(30)

with k � 1, 2 and

I0 � GCtxTh�GThGPi�TGPi � �1 � �	GGPiSTNTSTN � GGPiStrTStr	 � TTh	.

(31)

This symmetric linear steady state exists if the external input to
the cortex is such that

HCtx � Hrest
Ctx � TCtx � I0 (32)

and, if G� � G�,

HCtx � Hmax1
Ctx � TCtx �

I0

G� � G�
� GCtxTh�1 �

1

G� � G�
�TTh

(33)

or, if G� � G�,

HCtx � H max2
Ctx � TCtx �

I0

G� � G�
. (34)

To investigate the stability of the linear symmetric steady state, we
study the equations of the dynamics linearized around that state
and look for solutions of the following form (Strogatz, 1994):

�mk
���t	 � �k

��e
t.

It is easy to see that the eigenvalue 
 is a solution of the following
equation:

Det M�
	 � 0,

where the 10 � 10 matrix M is as follows:

M�� � �1 � 
��� � exp��

��	G��

with (�, �) two populations of the network. Note that G�� � 0
only if the population � is postsynaptic to �. The determinant of
M can be calculated analytically. One finds the following:

Det M�
	 � P�
	 � 
�1 � 
�	��1 � 
	4 � G�e�

�	

� G��1 � 
	e�

��2 � �2G�
2 e�2

��1 � 
	2.

Symmetry-breaking instability
Solving the equation P(0) � 0, one finds that the linear steady
state undergoes a symmetry-breaking instability for the
following:

1 � G� � �1 � �	G� � 0.

In network then settles into an asymmetric steady state, in which
the activity of the cortex in the circuit where it is active is as
follows:

Ak
Ctx �


HCtx � I0 � TCtx��

1 � G� � G�
.

As in the case of the linear symmetric steady state, we determine
the stability of the asymmetric steady states through the linear-
ized dynamics. One find the following matrix:

M�� � �1 � 
��� � exp��

��	G̃��

with ˜G�� � G�� if population � is active, 0 else. The stability of
these states is thus determined by the function P(
):

Det M�
	 � P�
	 � �1 � 
�	�1 � 
	4 �

�1 � 
�	G�e�

� � �1 � 
	G�e�

�,

and, in particular, the asymmetric steady states become unstable
for the following:

1 � G� � G� � 0.

Oscillatory instability
We then look for oscillatory instabilities to the linear symmetric
steady state. The precise conditions that G�, G�, 
�, 
�, � sat-
isfy at the instability onset are determined by the equation
P(i�) � 0. The instability condition simplifies if one assumes that

� � 
�' 
 and � � 1. In this case, one finds that the linear
steady state undergoes a Hopf instability for the following:

G� � G� � G0�
, �	, (35)

where

�� � tan�


4
�


�

4 � (36)

and

G0�
, �	 � �
1

cos�


4
�


�

4 ��
4

� �1 � � 2� 2	2. (37)

The frequency of the corresponding oscillatory mode is
�

2

.
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